Asymptotic behavior of solutions to the fragmentation equation with shattering: an approach via self-similar Markov processes
نویسنده
چکیده
The subject of this paper is a fragmentation equation with non-conservative solutions, some mass being lost to a dust of zero-mass particles as a consequence of an intensive splitting. Under some assumptions of regular variation on the fragmentation rate, we describe the largetime behavior of solutions. Our approach is based on probabilistic tools: the solutions to the fragmentation equation are constructed via non-increasing self-similar Markov processes that reach continuously 0 in finite time. Our main probabilistic result describes the asymptotic behavior of these processes conditioned on non-extinction and is then used for the solutions to the fragmentation equation. We notice that two parameters influence significantly these large-time behaviors: the rate of formation of “nearly-1 relative masses” (this rate is related to the behavior near 0 of the Lévy measure associated to the corresponding self-similar Markov process) and the distribution of large initial particles. Correctly rescaled, the solutions then converge to a non-trivial limit which is related to the quasi-stationary solutions to the equation. Besides, these quasi-stationary solutions, or equivalently the quasi-stationary distributions of the self-similar Markov processes, are entirely described. AMS subject classifications: 60J75, 60G18, 82C40
منابع مشابه
Airy equation with memory involvement via Liouville differential operator
In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...
متن کاملThe asymptotic behavior of fragmentation processes
The fragmentation processes considered in this work are self-similar Markov processes which are meant to describe the ranked sequence of the masses of the pieces of an object that falls apart randomly as time passes. We investigate their behavior as t → ∞. Roughly, we show that the rate of decay of the ℓ p-norm (where p > 1) is exponential when the index of self-similarity α is 0, polynomial wh...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملRenormalization of the fragmentation equation: exact self-similar solutions and turbulent cascades.
Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008